Skip to main content

Linear algebra (unfinished)

· 2 min read

IN MY OWN STYLE

Let’s go straight forward to the point.

Gauss-Jordan elimination

Gaussian elimination – to row echelon form

Gauss-Jordan elimination – to reduced row echelon form

  1. linear system of equations
  2. finding inverse matrix

Operations:

  • rR
  • R1 + R2
  • R1 -> R2

gauss-jordan example

Gaussian elimination – tik pirmas etapas. Antras ir trečias etapas padaromi kartu, perkonvertavus į lygčių sistemą ir įsistatinėjant iš apačios į viršų

first step

Pimojo etapo galimi tarpiniai veiksmai.

SOME DEFINITIONS:

Linear equation: $a_1x_1 + a_2x_2 + … + a_nx_n = b; (l_1, l_2, …, l_n)$

Types of equations:

No solution/there’s solution – inconsistent/consistent (neuderinta/suderinta) 1 solution/more than 1 solution – apibrėžta/neapibrėžta (ANGL?)

Matrices:

Triangular Trapezoidal – in gaussian elimination t substitution for laisvieji kintamieji in the last row (ANGL?) Row echelon form, Reduced row echelon form

Transpose

matrix of minors

matrix of coprimes

Inverse, Identity

invertible/singular matrix – has (/not) inverse (square; det(A) != 0)

Finding inverse

  1. Gauss-Jordan

gauss-jordan inversee example

  1. Adjancency matrix, matrix of coprimes, determinant

youtube link

Determinant

  1. Rule of Sarrus

sarrus

  1. Laplace expansion

laplace

  1. Unidentified

calculator thing

Let’s talk about matrices…

Matrix addition/subtraction

Matrix multiplication

Finding inverse matrix

Identity matrix Adjancency matrix Matrix of coprimes Determinant Gauss-Jordan elimination Vectors…

Cross product

Dot product

.

.

.

List:

Rank-nullity theorem

kernel, dimension, linear map, rank, null, nullspace, projection

matrix of minors, matrix of cofactors

Transpose

linear transformation

Gauss-Jordan elimination youtube gaussian elimination youtube row echelon form, reduced echelon form gauss-jordan finding inverse